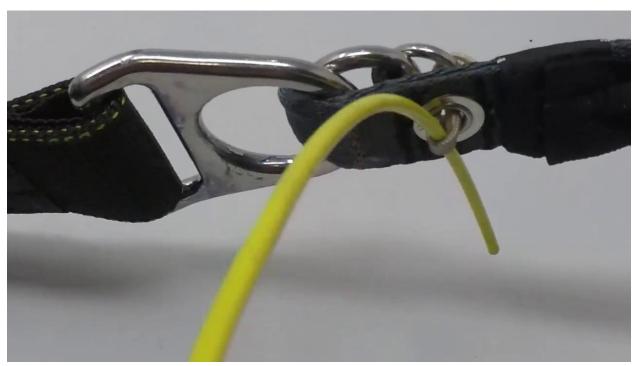
TYLASKA MARINE AND AEROSPACE

Testing and Analysis of Components for 3-Ring Systems


Presented by Patrick Pollin, Tim Tylaska, and Tom Dixon

Tylaska Components for 3-Ring Release


- Tylaska has developed new stainless steel components to be used with standard Mini 3-Ring release systems
- We are presenting a view of our analysis and development to provide information on the safety of these new components

Tylaska Components for 3-Ring Release • Demonstration

OUTLINE

Stainless Steel 3-Ring Testing and Analysis

This presentation will include:

- Background Information
- Manufacturing Process
- D-Ring Verification
- Middle Ring Verification
- Small Ring Verification
- Assembly Testing
- Summary

Tylaska 3-Ring Configuration

- Raw Material: UNS31600 Type 316L Stainless Steel
- Process: Cold Forging
 - No heat treat required
- Finishing: Highly polished gloss stainless
- Quality
 - Destructive test samples from every lot with third party verification.
 - Tylaska is registered to the Aerospace AS9100D quality management standard

BACKGROUND

Tylaska Background

- Tylaska is a USA manufacturer that has been producing high performance stainless steel quick release systems for over 25 years
- Tylaska has a Quality Management System registered to the aerospace standard AS9100D with annual third party audits

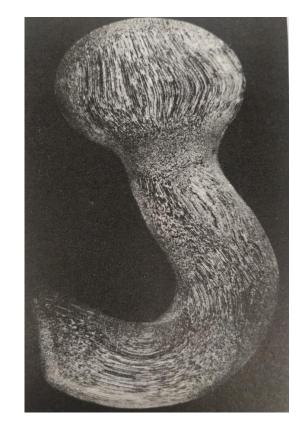
Austenitic Stainless Steel

- Unlike traditional hot forging, cold forging substantially increases yield and tensile strengths without the need for heat treating.
- Cold forging can also create a strong outer shell while maintaining a more ductile inner core
- Strengthening inherent to the cold forging process removes the danger of a part unintentionally missing heat treatment
- Parts maintain superior surface finish by avoiding hot forging scale

Highly ductile failure of an austenitic 316L stainless steel piece

Tylaska Cold Forging Process

- Austenitic stainless steel can be formed at room temperature using tremendous pressure
- Strain hardening takes place as the raw material deforms and flows under pressure to fill the shape of the mold
- Over 2 million pounds of force are applied to transform the raw material into the desired shape.



Performance Evaluation

A wide variety of tests are used to evaluate the structural integrity of the forgings

- Metallurgical inspection
- Static tests
 - Proof load
 - Destructive tensile test
 - Low temperature ductility test
- Dynamic Tests
 - Fatigue test
 - Impact loading
- Real world tests
 - Test cut-aways, skydive cut-away

QUALITY

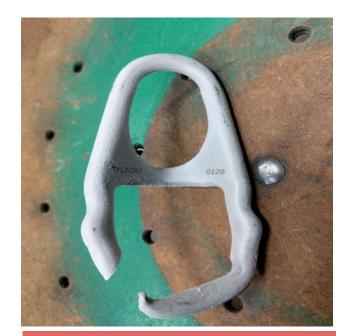
Quality and Manufacturing Traceability

- AS9100D Quality Management System
- Stringent In-House testing
- Third-Party testing on every lot

Tylaska maintains lot traceability on all parachute hardware components.

- Traceability and chemical certs of all materials used
- Manufacturing process traceability
- In-house destructive testing on every manufacturing lot
- Third party destructive testing on every manufacturing lot

Structural evaluation of Tylaska rings vs. existing hardware



Analysis of Parachute D-Rings

 Standard Plated Steel 4140 D-Ring (Raw material MIL-S-5626 steel)

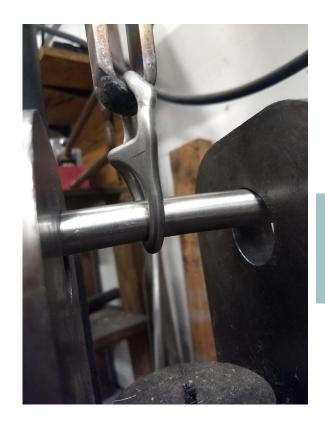
Tests to be discussed

- Proof Load & Tensile test
- Fatigue Test
- Impact Test
- Low Temp. Tensile
- Surface Hardness

Tylaska RD46
 CWH SR-8

• Tensile test sample

Dimensions of Common D-Rings



Part Type	Raw material	Part no.	Manufacturer	Thickness (mm)	Slot width (mm)	Inside diam. (mm)
Stainless steel D-Ring	316L Stainless Steel	RD46	Tylaska	6.3	44.7	33
Stainless steel D-Ring	316L Stainless Steel	SR-8	СМН	6.3	44.5	33
4140 Steel D-Ring	4140 Steel	Mini D-Ring	Various	6.5	44.7	33

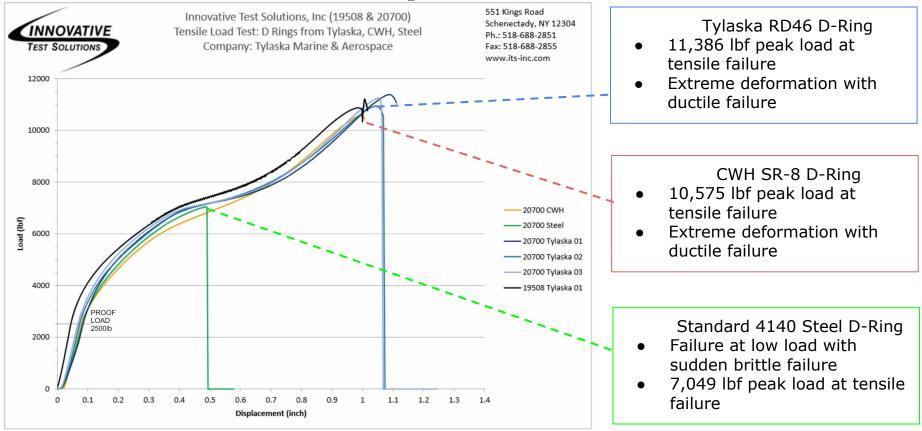
Failure Analysis: Tensile Test

 Cold forged stainless D-Ring at tensile failure; approximately 11,000 lbf

Failure Analysis: Tensile Test

CWH SR-8

Tylaska RD46


Standard 4140 Steel

Туре	Sample	Breaking Load (lbf)
D-Ring	CWH SR-8	10575
D-Ring	TYLASKA RD46 test sample-01	11386
D-Ring	TYLASKA RD46 test sample-02	10949
D-Ring	TYLASKA RD46 test sample-03	11256
D-Ring	TYLASKA RD46 test sample-04	11213
D-Ring	Std. 4140 Plated Steel	7049

Failure Analysis: Tensile Test

Failure Analysis: Results

CWH SR-8

- Ultimate failure at 10,575 lbf
- Ductile deformation provides warning before failure

Tylaska RD46

- Ultimate failures 10,949-11,386 lbf
- Ductile deformation provides warning before failure

Failure Analysis: Results

Standard 4140 Steel D-Ring

- Ultimate failure at only 7,049 lbf
- Brittle failure with fracture at webbing slot. Little deformation and no warning prior to failure

Failure Analysis: Fatigue Test

• High cycle repetitive loading from 0 lbf - 2000 lbf

Part type	Model	Loading	Cycles to failure
D-Ring	CWH SR-8	0 lbf-2000 lbf	17,784
D-Ring	Tylaska RD46	0 lbf-2000 lbf	36,643

Conclusion:

- In parachute riser applications, fatigue test results show that D-Ring will be intact beyond point of riser failure
- Tylaska parts exceed industry standard

Failure Analysis: Shock Load Test

Description: Identify failure mode produced by severe shock load on D-ring

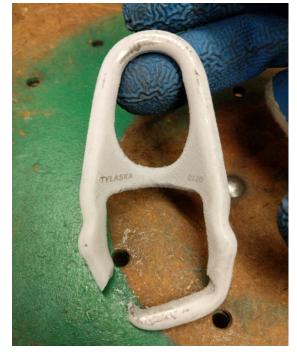
- Concrete block drops and suddenly stops on rigid chain to produce severe shock loading
- 1,600 lb block drops 10 ft and comes to sudden stop while connected to D-Ring

Failure Analysis: Shock Load Test

- Tylaska D-Ring RD46
 - Highly ductile failure under shock. Displays severe deformation

- 20
- CWH D-Ring SR-8
 - Highly ductile failure under shock. Displays severe deformation

- Standard steel No.8 D-Ring
 - Brittle failure at webbing slot. Little deformation displayed at failure


D-Ring takes full impact of shock load

Failure Analysis: Tensile Test at extreme low temperature -70°F

Part type	Model	Temperature	Breaking Load (lbf)
D-Ring	Tylaska RD46	-70°F	14,270

- Result: Ductile failure comparable to normal room temperature test.
- Breaking strength increases at low temperatures
- Conclusion: Suitable for use at extreme altitudes

Inspection: Surface Hardness

- Surface hardness is an indicator of material strengthening
- Example of impressions left from hardness tests

Part type	Model	Surface Hardness
D-Ring	CWH SR-8	99-103 Rockwell B
D-Ring	Tylaska RD46	98-103 Rockwell B
D-Ring	4140 Steel	40 Rockwell C (hardened by Heat Treatment)

Inspection: Surface Finishing

- Rings must be free of burrs and sharp edges in order to be safe for use with webbing products
- Inspection of critical areas in slot interior
- Smooth, polished surface prevents abrasion and corrosion

Analysis of common Middle Rings

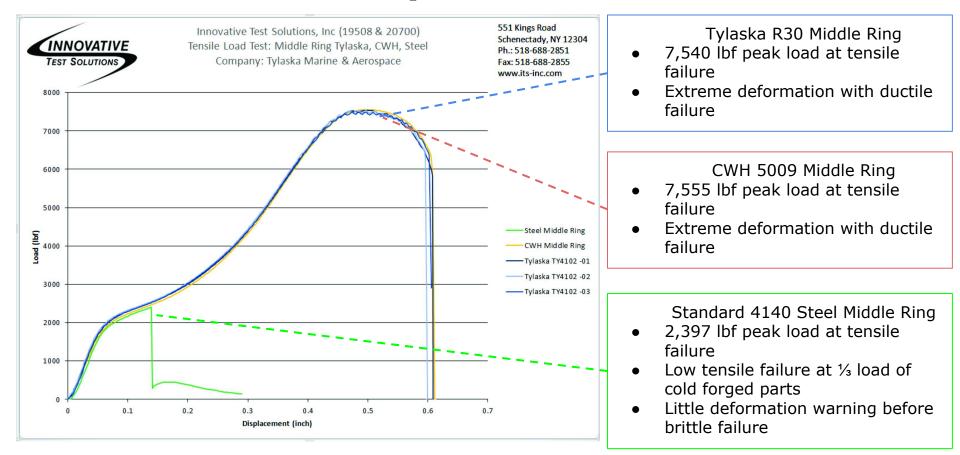
• Standard 4140 Steel • CWH 5009 • Tylaska R30

Tests

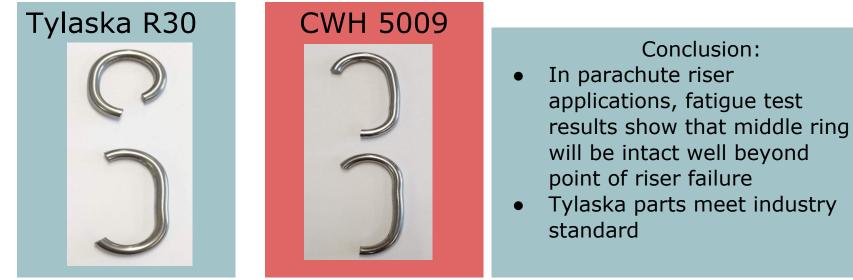
- Proof load & tensile test
- Fatigue test
- Low temp.
 Tensile test

Dimensions of Common Middle Rings

Part Type	Raw material	Part no.	Manufacturer	Thickness (mm)	Outside diam. (mm)	Inside diam. (mm)
Stainless Steel Middle Ring	316L Stainless Steel	R30	Tylaska	5	30	20
Stainless Steel Middle Ring	316L Stainless Steel	SR-5009	СМН	5	30	20
4140 Steel Middle Ring	4140 Steel	No. 3	Various	5	31.6	21.9


Failure Analysis: Tensile Test

Туре	Sample	Breaking Load (lbf)	Observations
Middle Ring	CWH 5009	7555	Ductile failure
Middle Ring	Tylaska R30 -01	7540	Ductile failure
Middle Ring	Tylaska R30 -02	7533	Ductile failure
Middle Ring	Tylaska R30 -03	7488	Ductile failure
Middle Ring	Std. Steel ring	2397	Brittle failure



Failure Analysis: Tensile Test

Failure Analysis: Fatigue Test

Part type	Model	Loading	Cycles to failure
Middle Ring	CWH 5009	0 lbf-1100 lbf	24,070
Middle Ring	CWH 5009	0 lbf-1100 lbf	28,472
Middle Ring	Tylaska R30	0 lbf-1100 lbf	22,267
Middle Ring	Tylaska R30	0 lbf-1100 lbf	25,350

Failure Analysis: Tensile Test at extreme low temperature -70°F

- Sample: Tylaska 316L R30 Middle Ring
- Result: Ductile failure comparable to normal room temperature test.
- Breaking strength increases from 7,500 lbf to 8,640 lbf.
- Conclusion: Suitable for use at extreme altitudes

Part type	Model	Temperature (°F)	Breaking Load (lbf)
Middle Ring	Tylaska R30	-70°F	8,640

OVERVIEW: SMALL RING

Analysis of common Small Rings

• Standard 4140 Steel • CWH SR-4 • Tylaska R19

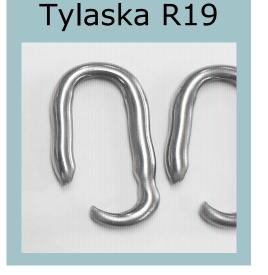
Tests

- Proof load & tensile test
- Fatigue test

SMALL RING: DIMENSIONS

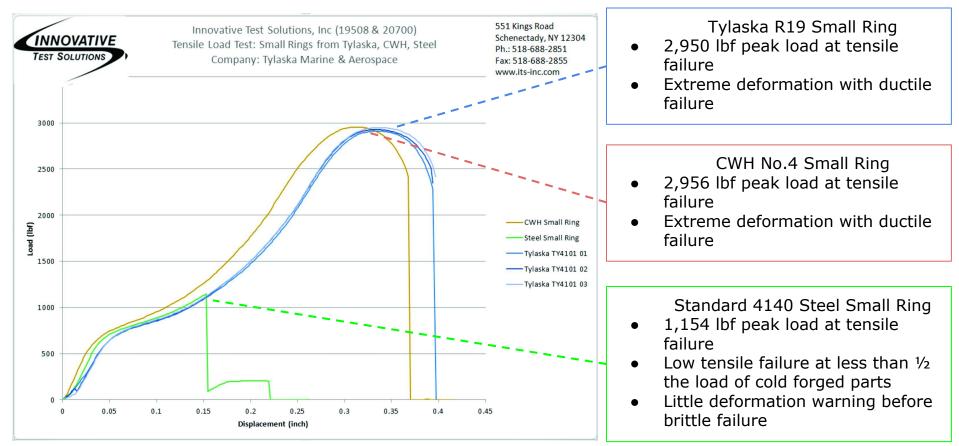
Dimensions of Common Small Rings

Part Type	Raw material	Part no.	Mfg.	Thickness (mm)	Outside diam. (mm)	Inside diam. (mm)
Small Ring	316L stainless steel	R19	Tylaska	3	19	13
Small Ring	316L stainless steel	SR-4	CWH	3	19	13
Small Ring	4140 Steel	No. 4	Various	3	20.3*	14


*Note: Steel small ring 20.3mm OD is <u>not</u> compatible with Stainless Middle Rings' 20mm ID! These parts will not assemble and are not compatible.

ANALYSIS: SMALL RING

Failure Analysis: Tensile Test



Туре	Sample	Breaking Load (lbf)
Small Ring	CWH SR-4	2956
Small Ring	Tylaska R19 -01	2911
Small Ring	Tylaska R19 -02	2928
Small Ring	Tylaska R19 -03	2950
Small Ring	Standard 4140 Steel No.4	1154

ANALYSIS: SMALL RING

Failure Analysis: Tensile Test

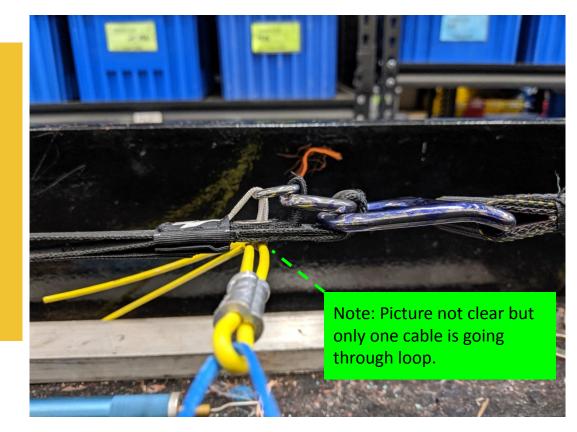
ANALYSIS: SMALL RING

Failure Analysis: Fatigue Tests

Conclusion:

- In parachute riser applications, fatigue tests show that small ring will remain intact beyond the point of riser failure
- Tylaska parts exceed industry standard

Part type	Model	Loading	Cycles to failure
Small Ring	CWH SR-4	20 lbf-500 lbf	18,053
Small Ring	CWH SR-4	20 lbf-500 lbf	18,147
Small Ring	CWH SR-4	20 lbf-500 lbf	13,547
Small Ring	Tylaska R19	20 lbf-500 lbf	50,392
Small Ring	Tylaska R19	20 lbf-500 lbf	28,571
Small Ring	Tylaska R19	20 lbf-500 lbf	31,449
Small Ring	Tylaska R19	20 lbf-500 lbf	44,373
Small Ring	Tylaska R19	20 lbf-500 lbf	40,807


ANALYSIS: RISER TESTING

3-Ring Assembly with Riser Testing

Riser tests to be discussed

- Tensile test
- Fatigue test
- Shock load test
- Mechanical advantage
- Ground-level cut-aways
- Live skydive cut-away

ANALYSIS: RISER TESTING

Failure Analysis: Riser tensile test

Conclusion

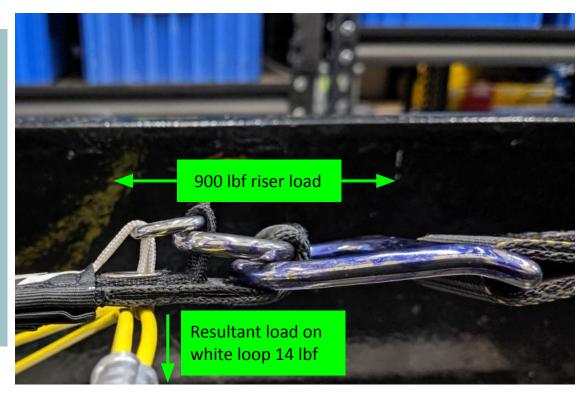
- Riser fails above 4000 lbf without deformation of the rings
- Note: Impressions visible
 - on D-Ring can be used to identify extreme overloading of riser

Part type	Components	Configuration	Breaking load (lbf)
Type 17 Mini 3-Ring Riser	CWH SR-4, SR-5009, CWH SR-8	Tensile break test	4192
Type 17 Mini 3-Ring Riser	Tylaska R19, R30, RD46	Tensile break test	4080
Type 8 3-Ring Riser	Tylaska R19, R30, RD46	Tensile break test	4410

ANALYSIS: RISER TESTING

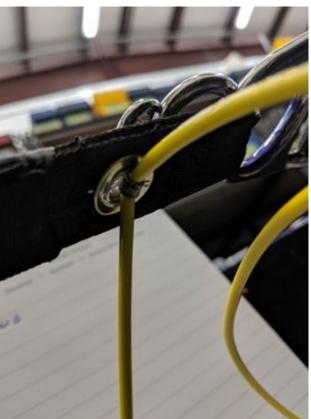
Failure Analysis: Riser with 3-Ring Fatigue Test

- High cycle loading at 725 lbf with D-Ring connection
- Failure mode: riser failure at stitching on front side loop.
- Conclusion: Fatigue test shows that forgings are intact after point of riser failure

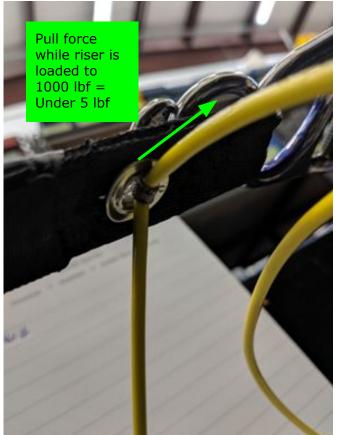

Part type	Components	Fatigue Loading	Fatigue life
Type 17 Mini	Tylaska R19, R30, RD46	0 lbf to 725 lbf	11,697 cycles
3-Ring Riser	rings		

ANALYSIS: RISER TESTING

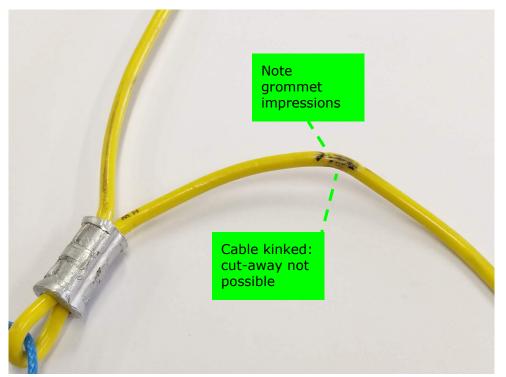
Analysis: Mechanical Advantage of a typical 3-Ring Assembly


- Type 17 riser assembled with 3-Rings
- 3-ring mechanical advantage measures approximately 64:1 at high loads
- 900 lbf riser loading places is 14 lb tension on white loop

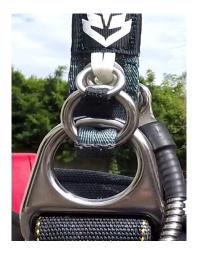
Analysis: Cut-away operation under high riser tension


- Cut-away function successfully tested at 1,000 lbf riser loading
 - Immediate release

Analysis: Cutaway function under high riser tension


 Note: At 1000 lbf riser loading, pull force required to slide single yellow cord under white loop is under 5 lbf

Cutaway function of typical mini 3-Ring system fails above 1500 lb riser loading


- Note: At high riser loads of approximately 1,500 lbf, yellow cable becomes indented by grommet: Cutaway cable will be extremely difficult to pull.
- At extreme riser loading of approximately 3,000 lbf, the cable becomes kinked and entirely seized from movement. <u>Cut-away would</u> <u>not be possible in this</u> <u>condition</u>

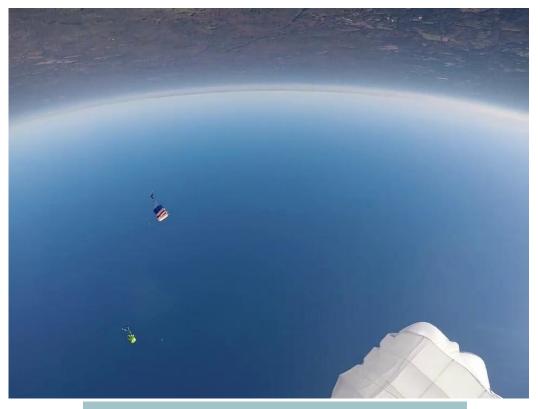
Live Testing: Hanging harness cut-aways

Cutaway tests in hanging harness

Normal 3-Ring Assembly 3-Ring Assembly at time of cutaway release Riser released from main container D-Ring

Live Testing: Hanging harness cut-aways

 Cut-away tests at low level


Live Testing: Skydive cut-away

- Live cutaway test using Tylaska 3-Ring on a custom cut-away test jump rig
- Skydive cut-away
 - 6,000' AGL main release with RSL and MARD (Main Assist Reserve Deployment)
 - Immediate reserve opening by MARD
- Result: Successful cut-away done by Tim Tylaska of Tylaska Marine and Aerospace

Live Testing: Skydive cut-away

Skydive Cutaway Video

CONCLUSION

3-Ring Testing and Analysis: Conclusion

- Tylaska has thoroughly analyzed the performance of the individual 3 ring components and performance as an assembly.
- These test results give Tylaska the confidence to certify its manufactured rings:
 - Safe for use in parachute container risers
 - Meet or exceed industry standard for stainless steel hardware

THE END THANK YOU!

Thank you for taking part in our presentation!

- We are interested in your questions, comments, and feedback.
- Let's go skydiving

CONTACT

Tylaska Marine & Aerospace 800 Flanders Rd Unit 1-4 Mystic, CT 06355 USA

tim@tylaska.com

860-572-8440

Presented by Patrick Pollin, Tim Tylaska, and Tom Dixon